Porous Silicon Carbide for MEMS
نویسندگان
چکیده
Metal assisted photochemical etching (MAPCE) of 4H Silicon Carbide (SiC) was utilized to generate locally defined porous areas on single crystalline substrates. Therefore, Platinum (Pt) was sputter deposited on 4H-SiC substrates and patterned with photolithography and lift off. Etching was performed by immersing the Pt coated samples into an etching solution containing sodium persulphate and hydrofluoric acid. UV light irradiation was necessary for charge carrier generation while the Pt served as local cathode. The generated porous areas can be used for the generation of integrated cavities in the single crystalline SiC substrates when covered with a chemical vapor deposited thin film of poly-crystalline SiC.
منابع مشابه
Chapter 1 Introduction to Silicon Carbide ( Sic ) Microelectromechanical Systems ( Mems )
This chapter serves as a brief introduction to the basic properties of silicon carbide (SiC) and the advantages of using SiC over other semiconductor materials for microelectromechanical systems (MEMS). Given the excellent and extensive review chapters that follow this one, I have confined this chapter to recent research performed at the University of Edinburgh in the area of SiC microelectrome...
متن کاملA review of silicon carbide development in MEMS applications
Due to its desirable material properties, Silicon Carbide (SiC) has become an alternative material to replace Si for Microelectromechanical Systems (MEMS) applications in harsh environments. To promote SiC MEMS development towards future cost-effective products, main technology areas in material deposition and processes have attracted significant interest. The developments in these areas have c...
متن کاملMEMS Applications of Porous Silicon
Porous silicon fabricated by partial electrochemical dissolution of bulk silicon, shows outstanding material properties. The nanostructure of the remaining Si-skeleton is used for specific optical devices, such as emitters and filters. The high internal surface of the material opens new opportunities for different types of microsensors and -actuators and microsystem concepts. The porous layers ...
متن کاملOxidised Macro Porous Silicon based Thermal Isolation in the Design of Microheater for MEMS based Gas Sensors
Chemical gas sensors suffers from the drawbacks such as high temperature ((>=300oC) and very high power consumption for sensing inflammable gases like CO, CH4 etc. In this work a new technique for thermal isolation in MEMS gas sensors is presented by coupling micromachining of bulk silicon and oxidized macro porous silicon (OMPS) layer to reduce the
متن کامل